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Abstract

In this paper we present the governing equations for the flow of a dense particulate mixture in a pipe. The governing equations for the
individual constituent as well as the mixture are provided based on continuum mechanics. Constitutive relations for the stress tensors and
the interaction force are presented and discussed. A model is provided for the viscosity of the mixture. Numerical solution for the steady
fully developed isothermal flow of such a mixture in a pipe is presented. The importance of the pressure drop and the skin friction in pipe
flow are also discussed. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Multiphase flows have increasingly become the subject
w xof considerable attention 1 because of their importance in

w xmany industrial applications such as fluidized beds 2 ,
w x w xpneumatic transport of solids 3 , hydraulic transport 4 ,

w xcoal combustion 5 , etc. For example, the flow behaviour
of gas–particle mixtures in transport lines has been of
interest in chemical processes for many years. In general,
empirical correlations that predict the flow and pressure
drop in such processes have been developed for specific
ranges of solids and gas properties as well as for various
geometries. Also, a great deal of research has been devoted
to the use of coal-based slurries as retrofit fuels. Histori-
cally, coal–oil mixtures have received the most attention;
their combustion characteristics and the flow or handling
properties of these fuels have formed the basis of many
research programs. A great deal of research emphasis has
been put in the field of fluidization, generally applicable to
any particulate material in the size range between 10 mm
Ž .diameter and 3 mm.

Another area of interest involving flow of particles is
the structural design of bins and silos. In processing miner-
als, in many processes such as the transport and combus-
tion of coal, and in preventing or protecting against natural
phenomena, such as avalanches or debris flows, it is
essential to understand the factors governing the packing

) Corresponding author. Tel.: q1-412-386-4975; fax: q1-412-386-
6004

w xand flow of powders and particulate matters 6 . Flowing
granular materials can represent a limiting case of two-
phase flow at high solids concentration and high solid-to-
fluid density ratios. Many situations, such as discharge
through bin outlets, flow through hoppers and chutes,
pneumatic transport of coal, and fluidized beds require
information or material properties of the granular media,

w xflow patterns, concentration profile, etc. 7–9 .
Much work has been reported in the literature about the

mathematical modelling of multicomponent systems. The
two foremost approaches use either volume-averaging

w xtechnique or mixture theory. In the first approach 10–12 ,
point-wise equations of motion, valid for a single fluid or a
single particle, are modified to account for the presence of
the other components and the interactions between compo-
nents. These equations are then averaged over time or
some suitable volume, which is large compared with some

Žcharacteristic dimension for example, particle spacing or
.the diameter of solid particle but small compared to the

dimensions of the whole system. The averaging process
yields several terms, which represent the interactions be-
tween the constituents. Constitutive relations to represent
these terms, as well as the stress tensor for each constituent

w xare then required. Soo 1,13 provides a historical back-
ground with a detailed analysis for various multiphase

w xflows in pipes, channels, etc. Marcus et al. 3 provide a
thorough analysis of pneumatic transport of solid particles.

The second approach used in the mathematical mod-
elling of multicomponent systems is mixture theory or the
theory of interacting continua. This theory traces its root to

Ž .
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w xthe work of Fick 14 and was first given a rigorous
w xmathematical structure by Truesdell 15 . It is a means for

studying the interaction between several constituents by
generalizing the equations and principles of the mechanics
of a single continuum. The fundamental assumption in this
theory is that at any instant of time, every point in space is
occupied by one particle from each constituent. That is,
each constituent is assumed to be homogenized to occupy
the volume of the mixture. The historical development and
the details of this theory are given in the works of Bowen
w x w x16 , Atkin and Craine 17,18 , Bedford and Drumheller
w x w x19 and Truesdell 20 . An updated and thorough analysis
of mechanics of mixtures is given by Rajagopal and Tao
w x21 .

In this paper we use the mixture theory approach and
present the governing equations for the flow of a dense
particulate mixture in a pipe. The equations for the individ-
ual constituent as well as the mixture are provided. Consti-
tutive relations for the stress tensors and the interaction
force are presented and discussed. A model is provided for
the viscosity of the mixture based on the constitutive
representation of the fluid and solid components. Numeri-
cal solution for the steady fully developed, isothermal,
flow of such a mixture in a pipe is presented. The impor-
tance of the pressure drop and the skin friction in pipe
flow are also discussed.

2. Governing equations

Since we are treating the mixture of a fluid and solid
particles as a continuum, the balance laws valid for a
single continuum would also apply here. Furthermore,
inherent to the theory of interacting continua are the

w xfollowing ideas, attributed to Truesdell 20 :
Ž .i All properties of the mixture must be mathematical
consequences of properties of the constituents.
Ž .ii So as to describe the motion of a constituent, we
may in imagination isolate it from the rest of the mix-
ture, provided we allow properly for the actions of the
other constituents upon it.
Ž .iii The motion of the mixture is governed by the same
equations as is a single body.
With these, we proceed to present the governing equa-

tions. The conservation of mass for each constituent is
given by the following.

2.1. Equations of motion for each constituent

Er1
qdiv r u s0, 1Ž . Ž .1

Et

Er2
qdiv r z s0, 2Ž . Ž .2

Et

where u is the velocity of the solid particles, z is the
velocity of the fluid, ErEt denotes the partial derivative
with respect to time, and r and r represent the density1 2

of the solid and the fluid in the mixture, respectively. In
order to show the relationship between these densities in
the current configuration and their values in the reference
configuration, we use the idea of volume fraction. Let:

r r r1 2 2
ns ; fs s 3Ž .

r r r10 20 f

where r denotes the density of solid particles in the1

current state in the mixture, and r is the density of the10

granular solid. Also, r and r denote the density of the2 20

fluid in the current and reference state, respectively, by the
w xvolume additivity constraint 22 . If for simplicity we

assign r and r as the densities of the solid particles ands f

fluid in their reference states, respectively, and in addition,
we assume the solid particles and the fluid are incompress-

Ž . Ž .ible in the reference state, then Eqs. 1 and 2 can be
rewritten as:
En

qdiv n u s0 4Ž . Ž .
Et
E 1ynŽ .

qdiv 1yn z s0. 5Ž . Ž .
Et

It is assumed that there is no interconversion of mass
between the two components and that for a saturated
mixture fs1yn .

The equations of the conservation of linear momentum
take the form:

du
r sdivT y fqr b , 6Ž .1 1 1d t

dz
r sdivT q fqr b , 7Ž .2 2 2d t
where drd t is the material time derivative, T and T1 2

denote the partial stress tensors of the solid particles and
the fluid, respectively, b represents the body force, and f

Ž .represents the mechanical interaction between the com-
ponents.

Furthermore, as we will discuss later, T and T are1 2

related to T and T in the following manner:s f

T sT ; and T s 1yn T . 8Ž . Ž .1 s 2 f

The conservation of angular momentum is not consid-
Ž .ered here as it only implies in this case that the total

stress tensor for the mixture is symmetric, though the
partial stresses need not be symmetric. The conservation of
energy is not considered here since we are interested in a
purely mechanical system such as flow in a pipe, where
any thermal or chemical effects are ignored.

2.2. Equations of motion for the mixture

To obtain the conservation of mass for the mixture, we
Ž . Ž .add Eqs. 1 and 2 . Therefore:

E r qrŽ .1 2
qdiv r uqr z s0. 9Ž . Ž .1 2

Et
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The mass-weighted velocity of the mixture, w, is de-
w xfined 16 :

r wsr uqr z. 10Ž .1 2

Ž .Thus, substituting Eq. 10 and the fact that rsr qr1 2
Ž .into Eq. 9 we obtain the conservation of mass for the

mixture:
Er

qdiv r w s0. 11Ž . Ž .
Et

To obtain the conservation of linear momentum for the
Ž . Ž .mixture, we add Eqs. 6 and 7 .

du dz
r qr sdivTqrb , 12Ž .1 2d t d t

Ž .where Ts T qT is the stress tensor for the mixture.1 2

Notice that we do not ‘‘force’’ the equation of linear
Ž .momentum for the mixture, Eq. 12 , to look like the

following equation:
dw

U
r sdivT qrb , 13Ž .

d t
where now the stress tensor of the mixture TU is no longer
defined as the sum of the partial stresses. Both approaches

w xhave been used in mixture theory. Green and Naghdi 23
provide an interesting explanation as to why the form of

Ž .the equation of linear momentum, given by Eq. 12 may
Ž .be more appropriate than the form given by Eq. 13 .

2.3. ConstitutiÕe relations for the stress and the interactiÕe
force

Based on our knowledge of modeling in the theory of
w xgranular materials and linearly viscous fluid 24,25 , it

would be natural to assume that all the constitutive func-
tions, i.e., T s, T f, and f depend on:

r , r , =r , =r , ==r , ==r , uf yus , D s , D f , . . . 14Ž .1 2 1 2 1 2

Where D s and D f are the symmetric parts of the
velocity gradients of the solid particles and the fluid,

Ž .respectively, defined in Eq. 25 , and = is the gradient
operator. The interaction f , in addition could depend on a
frame-indifferent quantity derivable from the acceleration
as and af of the solid and the fluid acceleration, respec-
tively, to account for the virtual mass effect. Then, using
methods which are by now standard in continuum mechan-

w xics 17,26–29 , we can obtain restrictions on the forms
appropriate for such constitutive expressions. Here, we
shall not discuss such an approach. Another approach to
modeling the mixture is to postulate the constitutive ex-
pressions by simply generalizing the structure of the con-
stitutive relations using the continuum theory. This is what
we shall do here. In this case:

T s sT s r , r , =r , =r , ==r , ==r , uf yus , D s , D fŽ .1 2 1 2 1 2

15Ž .
T f sT f r , r , =r , =r , ==r , ==r , uf yus , D s , D f .Ž .1 2 1 2 1 2

16Ž .

In the case of a single constituent granular solid, the
Cauchy stress T s would depend on the arguments that
have the superscript s associated with them. Such a model
would be a generalization of the model derived by Good-

w xman and Cowin 30,31 to describe the mechanics of
granular materials. Due to the presence of the term ==r ,1

such a theory would include the model proposed by Ko-
w xrtweg to describe the effects of capillarity 32 . It is also

worth observing that such models exhibit the phenomena
w xof normal stress differences 24 .

In general, the constitutive expressions for T s and T f

Ž . Ž .in Eqs. 15 and 16 would depend on the kinematical
quantities associated with both constituents. However, we
shall assume that T s and T f depend only on the kinemati-
cal quantities associated with the solid and fluid, respec-
tively. This assumption is sometimes called the ‘‘principle

w xof phase separation’’ 33 . This is not a principle but just
w xan assumption 34,35 . For the sake of simplicity, we shall

assume that T s and T f do not depend on ==r and ==r ,1 2

respectively. By using the standard methods in modern
continuum mechanics, i.e., the principle of material frame

Ž . w xindifference, an isotropic representation of Eq. 15 is 32 :

T s sa 1qa D s qa Nqa D s2 qa N 2
0 1 2 3 4

qa D sNqNDs qa D s2 NqNDs2Ž . Ž .5 6

qa D sN 2 qN 2 D s qa D s2 N 2 qN 2 D s2 ,Ž . Ž .7 8

17Ž .

where:

Ns=r m=r , 18Ž .1 1

where m denotes the outer product of two vectors and the
coefficients a , is0–8, in general, depend on r , and thei 1

invariants tr D s, tr D s2 , tr D s3, tr N, tr N 2, tr N 3, tr
Ž s . Ž s 2 . Ž s2 . Ž 2 s2 .D N , tr D N , tr ND , tr N D . If, in addition,
we require that T s depends linearly on D s and N, this
model simplifies considerably:

T s s b r qb r =r P=r qb r tr D s 1� 4Ž . Ž . Ž .0 1 1 1 1 1 2 1

qb r =r m=r qb r D s . 19Ž . Ž . Ž .4 1 1 1 3 1

The details of this derivation and the physical meanings
of the phenomenological coefficients are given in the

w xworks of Rajagopal and Massoudi 24 and Rajagopal et al.
w x36 . A similar model to this was also proposed by Savage
w x Ž .37 . The spherical part of the stress tensor in Eq. 19 can
be interpreted as the solid pressure ps. The material mod-
uli b and b , are the material parameters that reflect the1 4

distribution of the granular particles, and b plays the role0

akin to pressure in a compressible fluid and is given by an
equation of state. The material modulus b is again a2

viscosity akin to the second coefficient of viscosity in a
compressible fluid, and b denotes the viscosity of the3
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w xgranular particles. Rajagopal and Massoudi 24 have out-
lined an experimentalrtheoretical program to determine
these material moduli. We should remark here that other

w xtheories such as the kinetic theory of gases 38 or particle
w xsimulation 39,40 , etc., can also be used to derive an

expression for the stress tensor of the granular materials.
For a recent and detailed review of all these issues, we

w xrefer the reader to the work of Hutter and Rajagopal 41 .
In the majority of fluid–solid mixtures, the fluid is

either a gas or water. Therefore, it seems appropriate to
assume that the fluid behaves as a linearly viscous fluid
Ž .Newtonian , whose constitutive equation is:

T f syp f 1ql tr D f 1q2m D f . 20Ž . Ž .f f

In the above-equation, p f is the fluid pressure, l andf

m are the viscosities. If the fluid is incompressible, thenf

p f is one of the unknown quantities in the problem that
would have to be calculated. If the fluid is compressible,
an equation of state is needed. In general, p f, l , and mf f

are functions of r .f
Ž . Ž .The above constitutive relations, Eqs. 19 and 20 ,

express the behavior of the granular materials and the fluid
phase, respectively, in their reference states. However,
since we are interested in the motion of the mixture in the
current configuration, these equations somehow would have
to be modified. Departing from previous approaches, we
shall assume that the stress T s and T f in the pure state are

Ž .weighted by n and 1yn , respectively. Thus, we shall
assume that:

T sT s , 21Ž .1

and

T s 1yn T f , 22Ž . Ž .2

and thus the total Cauchy stress in the mixture T is given
by:

TsT s q 1yn T f . 23Ž . Ž .
When n™0, then T™T f, while when n™1, then

T™T s as we would expect. It is important to recognize
that this limit, i.e., as n™1, is an ‘ideal’ limit in the sense
that in reality there is a practical maximum packing be-
yond which the particles cannot be packed anymore; this is
usually designated as n .max

In the previous approaches, the weighing of the stresses
of the components were done according to the ratio of
their current density in the mixture to their pure density.
Thus, for instance if r and r represented the pures f

density of each phase, and r and r represented the1 2

current density of each phase in the mixture, then T s was
weighted by r rr and T f by r rr . However, the1 s 2 f

weighting could also be done with regard to the mass
fraction of the constituents in the mixture rather than their
mass fraction with regard to their respective pure state.
Thus, we could weight the first constituents by r rr, and1

the second constituent by r rr. In this sense, the former is2

a weighting in a Lagrangean manner with weighting done
with regard to the reference mass fractions while the latter
could be viewed as an Eulerian approach in which the
weighting is done with respect to the ratio of the current
mass fractions. Notice that in our modeling we have
neglected the dependence of stresses on ==r and ==r .1 2

Introducing higher gradients in the theory always intro-
duces the attendant difficulty of specifying additional
boundary conditions. Later, we shall see that even depen-
dence of =r or =n introduces difficulties with regard to1

boundary condition.
In the above model, we shall assume that b , b ,0 2

b ™0 as n™0, and thus T s ™0 as n™0. This simply4
Ž .implies that when there are no particles, ns0 , the stress

in the granular materials, T s, would vanish. Also, notice
that T ™0 as n™1.2

The mechanical interaction force between the mixture
w xcomponents, f , is given as 42 :

fsA grad nqA C n us yufŽ . Ž .1 2

y1r42 s fqA n 2 tr D D u yuŽ .Ž .3 2 2

qA n W yW us yuf qA a , 24Ž . Ž . Ž .4 2 1 5 vm

where a is a properly frame-invariant measure of thevm

relative acceleration between the mixture components and
Ž .C n represents the dependence of the drag coefficient on

Ž .the volume fraction. The terms in Eq. 24 reflect the
presence of density gradients, 1 drag, ‘‘slip-shear’’ lift,
‘‘spin’’ lift, and virtual mass, respectively. Muller’s work
w x43 indicates that a term of the form A grad n must be1

included in the interaction to get consistently formulated
problems. The term multiplying A is a generalization of3

w xSaffman’s 44,45 single particle result first proposed in
w xthis form by McTigue et al. 46 . The material coefficients

A to A need to be determined experimentally, or via1 5

alternative theories such as the kinetic theory. The general
trend is to use the experimental correlations based on
single particle measurements and, whenever applicable, by
suitable methods these correlations are generalized for an
assembly of particles. There are few experiments except in
the case of drag, that give specific correlations for these
coefficients. For a review of these issues, the reader is

w xreferred to the work of Johnson et al. 47 . Furthermore,

1 1
T TD s L qL , D s L qL 25Ž .Ž . Ž .1 1 1 2 2 22 2

1 1
T TW s L yL , W s L yL 26Ž .Ž . Ž .1 1 1 2 2 22 2

1 The actual form of this interaction should include the terms a grad1

r q a grad r where a and a are constants. If we assume that the1 2 2 1 2

system is a saturated mixture with incompressible components, this
expression simplifies to A grad n where A s a y a . Since no1 1 2 1

information concerning the coefficients a and a is available and a1 2

term of the same form arises from the granular solid stress tensor, this
term will be neglected in the present work.
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where

L sgrad us ; L sgrad uf . 27Ž .1 2

Ž . Ž . Ž . Ž .Substituting Eqs. 19 , 20 and 8 into Eq. 12 , we
obtain the balance of linear momentum for the mixture:

du dz
r n qr 1ynŽ .s fd t d t

ssdiv b qb =nP=nqb tr D 1� 40 1 2

s fqb D qb =nm=n qdiv y 1yn p 1Ž .Ž3 4

ql 1yn tr D f 1q2m 1yn D fŽ . Ž . Ž . .f f

qr n bqr 1yn b. 28Ž . Ž .s f

Ž .Taking the limit of this equation as n™0 no particles ,
we should obtain the Navier–Stokes equation. This is only

w xpossible if 48 :

b ™0; b ™0; b ™0 as n™0 29Ž .0 2 3

Ž .which was mentioned earlier. Therefore, Eq. 28 , as n™0,
becomes:

dz
f f f fr sdiv yp 1ql tr D 1 q2m D qr bŽ .� 4f f fd t

30Ž .
which is indeed the Navier–Stokes equation. Now, taking

Ž . Žthe limit of Eq. 28 as n™1 or n™n dense flow ofmax
.granular materials , we obtain the equation of motion for

flowing granular materials where the effects or the pres-
ence of the interstitial fluid is neglected. Therefore, Eq.
Ž .28 , as n™1, becomes:

du
sr n sdiv b qb =nP=nqb tr D 1� 4s 0 1 2d t

sqb D qb =nm=n qr n b. 31Ž .3 4 s

To obtain explicit dependence of b s on n , we use ai

Taylor series expansion. Thus:

< 2 <b n sb qb 0 nqO n ; is0, 1, 2, 3, 4Ž . Ž . Ž .i i0 i

32Ž .
Ž < 2 <.where O n indicates terms of higher order than n . Eq.

Ž .29 implies that b s0 for is0, 2, and 3. Therefore, asi0

a first approximation, the material properties b through0

b must have the following forms:4

b sk n ; is0, 2, 3 33Ž .i i

b sk nqk n ; js1, 4. 34Ž .j 0 j j

Through a simple analysis, Rajagopal and Massoudi
w x Ž .24 have shown that if the constitutive Eq. 19 is to apply

Ž .at equilibrium static case, then k -0 and therefore:0

b sykn . 35Ž .0

With such structure, this model is capable of predicting
one of the normal stress differences, which in the context
of granular materials, is often referred to as ‘dilatancy’.

w xThis phenomenon was first observed by Reynolds 49 and

w xexplained later by Bagnold 50 . To better understand the
w xsignificance of b s, Gudhe et al. 51 used this model toi

study the flow and heat transfer of granular materials
flowing down an inclined plane.

With these restrictions, the stress tensor of the mixture,
Ž .Eq. 23 , becomes:

Ts ykny 1yn p f q k qk n =nP=nŽ . Ž .� 01 1

q k n tr D s ql 1yn tr D f 1qk n D sŽ . Ž . 42 f 3

q k qk n =nm=nq2m 1yn D f . 36Ž . Ž . Ž .04 4 f

In Section 2.4, we will discuss the implications of
modeling a mixture of fluid–solid particles as being com-
posed of granular materials and a linearly viscous fluid.

2.4. On the Õiscosity of the mixture

Historically, the problem of the theoretical determina-
tion of the viscosity of an infinitely dilute suspension
consisting of an incompressible Newtonian fluid and rigid

w xspherical particles was studied by Einstein 52 . He derived
the classical formula for the effective viscosity of the
suspension:

m
U sm 1q2.5n , 37Ž . Ž .f

where m is the viscosity coefficient of the fluid and n isf

the volume fraction of spheres in the suspension. Einstein
assumed that n is very small compared with unity. This
indicates that the particles are far apart from each other

w xand are not interacting with each other. Taylor 53 showed
that if the spheres are small drops of another fluid, then the
viscosity of the suspension is given by:

2
X

m q mf5U
m sm 1q2.5n , 38Ž .Xf

m qm� 0f

where m
X is the viscosity of the liquid drops and m is thef

w xviscosity of the host fluid. Later, Batchelor and Green 54
derived a formula for the effective viscosity including the
terms of order n 2. They showed that:

m
U sm 1q2.5nq7.6n 2 , 39Ž . Ž .f

where again n<1. There have been many other attempts,
both experimentally and analytically, to derive an equation

Ž .for the viscosity of the mixture or suspension ; for a
review of transport properties of two-phase materials, the

w xreader is referred to the work of Batchelor 55 .
w xSampaio and Williams 56 used a modified version of

mixture theory to obtain an expression for the effective
viscosity of a mixture of two liquids. They showed that if
the velocities of the two liquids are equal, then the effec-
tive viscosity of the mixture is given by:

msm qm qm , 40Ž .A B AB

where m and m are the viscosities of the two fluids andA B

m is defined as the ‘‘mutual viscosity’’, which arisesAB
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due to the interactions of the molecules of liquid A and
liquid B, and furthermore, all the viscosities are assumed
to be functions of the volume fraction. If this is the case,

w Ž .xthen it is not clear how m could exist cf. Eq. 40 if theAB

two liquids have the same velocity. They also compared
Ž .Eq. 40 with the expression given by Dolezalek and

Ž w x.Schulze see reference in Ref. 56 , where:
22msf h q2f 1yf h q 1yf h , 41Ž . Ž . Ž .A AB B

Ž .where h and h are the pure unmixed viscosities of theA B
w xtwo liquids. Sampaio and Williams 56 concluded that:

22m sf h ; m s 1yf h ; m s2f 1yf h .Ž . Ž .A A B A AB AB

42Ž .
w xNunziato 57 , using mixture theory, defined the viscos-

ity of a mixture of a fluid and particles as:

ms 1yn m qnm . 43Ž . Ž .f s

Again, for the case of no slip between the two phases
Ž . w xi.e., equal velocities Nunziato 57 suggested that the

w Ž .xsolid viscosity, in the low concentration limit cf. Eq. 37
can be estimated as:

m s3.5m . 44Ž .s f

If the mixture of fluid–solids is assumed to be com-
posed of a saturated granular media infused with a linearly
viscous fluid, then the stress tensor for the mixture accord-

Ž .ing to the present formulation is given in Eq. 36 . It can
be seen that it is not an easy matter to define a mixture

Ž .viscosity by simply looking at Eq. 36 . That is, if some-
how we can rewrite this equation as:

Tsyp 1q2m D qa=nm=n , 45Ž .m m m

where p can be thought of as a mixture pressure and Dm m

as the stretching rate for the mixture, then we can consider
Ž .the meaning of m the mixture viscosity and how it canm

possibly be measured. This, however, is not an easy task.
Instead, if we consider the ‘ideal’ case of equal velocities
Ž . Žusz i.e., the particles are simply being carried by the

. Ž .host fluid , then Eq. 36 is rewritten as:

Ts ykny 1yn p f q k qk n =nP=nŽ . Ž .� 01 1

q k n tr Dql 1yn tr D 1Ž . Ž . 42 f

q k nq2m 1yn Dq k qk n =nm=n .Ž . Ž .3 f 04 4

46Ž .
This indicates that the flow characteristics of a suspen-

sion can be described, in this special case, by a constitutive
w x Žrelation similar to that of a Korteweg-type fluid 32 . The

previous approaches have indicated that the suspension
behaves like a Newtonian fluid where the effective viscos-

.ity is a function of the volume fraction. Therefore, if one
performs a simple shear flow experiment, the term multi-
plying D in the above equation can be thought of as the
viscosity of the mixture, i.e.:

k3
m s nqm 1yn . 47Ž . Ž .m f2

If at the same time, the volume fraction of the solid
particles and the viscosity of the fluid are independently
measured, we can obtain the viscosity of solid particles k .3

Ž .Eq. 47 simply indicates a relationship between the vis-
cosity of the mixture and the viscosities of the two con-
stituents provided:
Ž .i The fluid is modeled as a linearly viscous fluid,

Ž .represented by Eq. 20 ;
Ž .ii The solid particles are modeled as a granular media

Ž .represented by a constitutive relation, Eq. 19 ;
Ž .iii The total stress of the mixture is weighted accord-

Ž .ing to Eq. 23 ;
Ž .iv The material moduli of the granular media are

Ž . Ž .approximated as linear functions, Eqs. 33 and 34 ,
with the restriction mentioned; and
Ž .v The fluid and solid velocities are the same.
In the more complicated case of u not being equal to z,

there is no clear analogy of a mixture viscosity to the
viscosity of a single fluid.

2.5. Flow through a pipe

Consider the pressure-driven flow of a mixture through
an infinitely long pipe of circular cross-section. Let z
denote the direction of the flow and let the wall of the pipe
be located at rs1. If the flow is steady and laminar, the
velocity profiles and solids distribution can be assumed to

Ž f shave the form: for simplicity we replace u and u by V1
.and V , respectively .2

V sV r e ; V sU r e ; nsn r . 48Ž . Ž . Ž . Ž .1 z 2 z

The balance of mass equations are automatically satis-
fied by these assumptions. Virtual mass effects are not
present in this steady unidirectional flow; body forces are
also neglected. The detailed derivation of the following

w xequations are given in the work of Johnson et al. 58 and
we will only mention them here for the sake of complete-

Ž . Ž . Ž . Ž .ness. Substituting Eqs. 48 and 24 into Eqs. 6 and 7
Ž . Ž . Ž . Ž .and using Eqs. 19 , 20 , 33 and 34 we have:
1 EP

Y X X X1yn V q V yn V yRe 1ynŽ . Ž .ž /r Ez

qC ReFF n UyV s0 49Ž . Ž . Ž .2

1EP 1 yX X X< < 2n Py 1yn q C n V V UyVŽ . Ž .3
Er 2

1
X Xq C n V yU UyV s0 50Ž . Ž . Ž .42

1
Y X X X2B nqn U q U q 2nq1 n UŽ . Ž .3 ž /r

y2C FF n UyV s0 51Ž . Ž . Ž .2

3X X Y X2B n q B qB 2 1qnqn n n q 2nq1 nŽ . Ž . Ž . Ž .0 1 4

11 12 yX X X2 < < 2qB n 1qnqn y C n V V UyVŽ . Ž . Ž .4 3r 2
1

X Xy C n V yU UyV s0 52Ž . Ž . Ž .42



( )

where the prime denotes a derivative with respect to r.
The dimensionless numbers are:

r u L l u2
0 0 f 0

Res ; Ls ; Frs 53Ž .
m r u L Lgf 0 0

b b b0 1 2U U UB s ; B s ; B s 54Ž .0 1 22 2 2 r u Lr u r u L 0 00 0 0 0

b b A3 4 1U UB s ; B s ; C s 55Ž .3 4 12 2 2r u L r u L r u0 0 0 0 0 0

A L A L1r2 A A2 3 4 5
C s ; C s ; C s ; C s . 56Ž .2 3 4 51r2r u r rr u0 0 0 00 0

Ž . Ž .Eliminating the pressure term from Eqs. 49 and 50
by cross-differentiating yields:

1
Z X Y1yn V q 1yn y2n VŽ . Ž .

r

1 1
Y X Xq y 1yn yn y n VŽ .2 rr

X X XqC Re FF UyV qFF U yV s0. 57Ž . Ž . Ž .2

Ž . Ž .Now let us consider Eqs. 51 and 52 in the limiting
case as n™0. Note that it is assumed, based on physical

Ž .considerations, that C n ™0 as n™0. If n'0, Eqs.
Ž . Ž . Ž .51 and 52 vanish, and Eq. 57 becomes:

X1 XXrV s0 58Ž . Ž .
r

which is consistent with the Poiseuille flow of a pure fluid,
Ž 2 2 .with the solution being Vscr4 r yR where c is a

constant.
Ž . Ž . Ž .Eqs. 51 , 52 and 57 must be solved numerically. To

do so the following definitions are introduced:

2C B2 0
p sC Re ; p s ; p s 59Ž .1 2 2 3B B qB3 1 4

B yC yC4 3 4
p s ; p s ; p s .4 5 6B qB 2 B qB 2 B qBŽ . Ž .1 4 1 4 1 4

60Ž .

These dimensionless parameters have physical interpre-
tations. p is the ratio of the drag force exerted on the1

fluid by the solid to the viscous forces within the fluid
phase. p is the ratio of the drag force exerted on the solid2

by the fluid to the viscous forces within the solid compo-
nent. p and p are the combinations of the material3 4

coefficients from the granular solid constitutive equation;
they affect the distribution of solid in the flow but do not
directly influence the velocity profiles of either fluid or
solid. p incorporates the effect of slip-shear lift into the5

equations; p is the spin lift coefficient. The fluid and6

solid velocity fields exert an effect on the distribution of

the granular solid only when p /0 andror p /0. With5 6
Ž . Ž . Ž .these definitions Eqs. 51 , 52 and 57 are rewritten as:

1
Z X Y1yn V q 1yn y2n VŽ . Ž .

r

1 1
Y X Xq y 1yn yn y n VŽ .2 rr

X X Xqp FF UyV qFF U yV s0 61Ž . Ž . Ž .1

1
Y X X X2nqn U q U q 2nq1 n UŽ . Ž .ž /r

yp FF n UyV s0 62Ž . Ž . Ž .2

3Y X X X22 1qnqn n n q 2nq1 n qp nŽ . Ž . Ž . 3

11 2 yX X X2 < < 2qp n 1qnqn qp n V V UyVŽ . Ž . Ž .4 5r

qp n V X yU X UyV s0. 63Ž . Ž . Ž .6

Ž .Notice that when p sp s0, Eq. 63 is not coupled5 6
Ž . Ž .to Eqs. 61 and 62 through the velocity field, and thus

Ž .Eq. 63 can be solved independently to determine n .
w xBased on Batchelor’s 59 result for sedimentation of a

w xdilute suspension of spheres, Drew 33 proposes the fol-
Ž .lowing approximation for C n .

FF n sn 1q6.55n . 64Ž . Ž . Ž .
This expression is used here with the understanding that

Ž .it is not valid as f™0 or as n™n .m

2.6. Boundary conditions

Ž .Adherence or the no-slip boundary conditions are
imposed on both the constituents at the pipe wall:

U 1 sV 1 s0. 65Ž . Ž . Ž .
The flow rate of the mixture is also prescribed as a

condition. The mass flow rate of a two component mixture
is defined as:

1 1
Q s2p r V rd rs2p 1yn r Vqnr U rd r .Ž .H Hm m m f s

0 0

66Ž .

A volumetric flow rate may be defined as:

1 1
Qs2p V rd rs2p 1yn VqnU rd r . 67Ž . Ž .H Hm

0 0

When the mixture is neutrally buoyant, i.e., r sr sr,f s

these two quantities are simply related by Q srQ. Them

volumetric flow rate of the mixture is the quantity pre-
scribed in the present work.

The appropriate conditions on n are the boundary value
of n at the pipe wall and a prescribed average volume
fraction, defined through:

1
Ns2p n rd r . 68Ž .H

0
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ŽFig. 1. Effect of p on fluid velocity. II; : p s1; —:2 2
.p s10; - - -: p s100; —— ——: p s1000 .2 2 2

Numerical values for n on the boundary could be
obtained from experiments such as those performed by

w x w xSegre and Silberberg 60 . Kadambi et al. 61 observe
experimentally that n™0 as r™1 for small values of N.

2.7. Numerical results

The full treatment of this problem is given in the work
w xof Johnson et al. 42,58 . In this section, we only discuss

the significance of the dimensionless numbers and their
influence on the flow field. Issues such as pressure drop
and skin friction which were not considered before are
given more consideration here. With regard to the velocity
and concentration profiles, only a few representative fig-
ures will be presented.

ŽFig. 2. Effect of p on solid velocity. II; : p s1; —:2 2
.p s10; - - -: p s100; —— ——: p s1000 .2 2 2

ŽFig. 3. Flow in a pipe: effect of p ; p s10; p s5; p s3; p sp4 1 2 3 5 6
.s0; Ns0; Qs3 .

There are some restrictions on the values the parameters
may take. Clearly, the drag coefficient, Reynolds number,
and the material viscosities must be greater than zero and
therefore, p and p must be also greater than zero.1 2

Similarly, the lift coefficients p and p must be less than5 6

zero for the direction of lift to match experimental obser-
w xvations 62 . Based on the results obtained for flow be-

w xtween parallel plates 47 , we assume B qB -0. Since1 4
w xB is also less than zero 24 , p is greater than zero and0 3

p is also assumed to be greater than zero.4

Increasing values of p result in a decrease in the1

maximum fluid velocity and a ‘‘flattening’’ of the profile.
Note that, as p gets large there are local maxima in the1

fluid velocity profiles. Though it does not change shape,
the solid velocity also decreases due to the coupling of the

ŽFig. 4. Flow in a pipe: effect of p ; p s10; p s5; p s4; p sp3 1 2 4 5 6
.s0; Ns0; Qs3 .
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ŽFig. 5. Flow in a pipe: effect of N; p s10; p s5; p s4; p s4;1 2 3 4
.p sp s0 .5 6

two equations. Physically, an increase in the value of p 1

corresponds to either an increase in the drag coefficient or
an increase in the Reynolds number or both, and thus the
results obtained are in keeping with physics.

Increasing p results in a decrease in fluid velocity and2
Ž .a corresponding increase in solid velocity Figs. 1 and 2 .

p does not affect the shape of either the fluid or solid2

velocity profile. Physically, an increase in the value of p 2

corresponds to either an increase in the drag coefficient or
a decrease in the dimensionless number B . The drag of3

the fluid on the solid is the only force driving the motion
of the granular material in this problem. Thus, if p s0,2

U is identically zero; if p )100 the UfV everywhere.2

Figs. 3 and 4 show plots of volume fraction vs. r for
Ž .various values of p and p with p sp s0 . Note3 4 5 6

ŽFig. 6. Flow in a pipe: effect of N; p s10; p s5; p s4; p s4;1 2 3 4
.p sp s0 .5 6

ŽFig. 7. Flow in a pipe: effect of N; p s10; p s5; p s4; p s4;1 2 3 4
.p sp s0 .5 6

that an integral condition is used and the area under each
of the curves are the same, although the boundary condi-
tion at the tube wall is different for each curve. Recall
when p sp s0, the equation for n is not coupled to5 6

either the fluid or solid velocity field. The distribution of
the granular solid is therefore not influenced by p or p .1 2

The velocity profiles, however, are strongly influenced by
the choice of p and p . With regard to flowing granular3 4

materials, some interesting experimental observations are
w xprovided in the work of Ahn et al. 63 .

2.8. Applications

Once n , U, and V are known, several quantities of
interest may be derived from the solutions. The pressure

Ž .gradient may be calculated by simply rearranging Eq. 49 :

EP 1
Y XRe sV q Vž /Ez r

1
X Xy n V yC ReFF n UyVŽ . Ž .2ž /1yn

69Ž .

Ž .or, combining this equation with Eq. 52 :

1
Y X X X2nqn U q U q 2nq1 n UŽ . Ž .ž /EP B r3

s ž /Ez 2 1yn

1
Y X X X1yn V q V yn VŽ . ž /1 r

q . 70Ž .
Re 1yn
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ŽFig. 8. Flow in a pipe: effect of N; p s10; p s5; p s4; p s4;1 2 3 4
.p sp s0 .5 6

This expression may be rewritten as:

EP 1 B3
sg qg 71Ž .1 2ž / ž /Ez Re 2

where

1
Y X X X1yn V q V yn VŽ . ž /r

g s 72Ž .1 1yn

1
Y X X X2nqn U q U q 2nq1 n UŽ . Ž .ž /r

g s . 73Ž .2 1yn

Here g represents the pressure drop due to the fluid1

component of the mixture and g represents the pressure2

drop due to the solid component. The average values of the
Žfunction g and g are plotted vs. volumetric flow rate1 2

.for several values of N in Figs. 5 and 6 for a representa-
tive set of dimensionless parameter values.

In addition to the pressure drop, the skin friction at the
wall is also of practical interest. This quantity is related to

Ž .the traction vector or force at the wall which is:

tsT Pnm

2X2P 1yn yB ny B qB 1qnqn nŽ . Ž . Ž . Ž .0 1 4

0s .
1 1

X X2� 0y 1yn V y B nqn UŽ . Ž .3Re 2

74Ž .
The shear stress at the wall can be written:

1 B3
ssh qh 75Ž .1 2ž / ž /Re 2

where

h sy 1yn V X ; h sy nqn 2 U X . 76Ž . Ž . Ž .1 2

Here h represents the shear due to the fluid component of1

the mixture and h represents the shear due to the solid2
Žcomponent. The functions h and h are plotted vs.1 2

.volumetric flow rate for several values of N in Figs. 7
and 8 for a representative set of dimensionless parameter
values.

3. Nomenclatures

a acceleration vector
a frame-indifferent relative accelerationvm

A interaction coefficient, is1 to 5i

b body force vector
BU dimensionless b si

B constant part of BU
i i

p dimensionless parameters; is1 to 6i

C dimensionless Asi

D stretching tensor
f interaction force vector
Fr Froude number
C volume fraction dependence of drag
g gravity
g dimensionless pressure drop, fluid1

g dimensionless pressure drop, solid2

h dimensionless shear stress, fluid1

h dimensionless shear stress, solid2

l identity tensor
L gradient of a velocity vector
N average volume fraction
p fluid pressure
P dimensionless fluid pressure
Q volumetric flow rate of mixture
Q mass flow rate of mixturem

r dimensionless radial coordinate
Re Reynolds number
T stress tensor
U solid velocity
z velocity vector
V fluid velocity
V dimensionless velocity vector
W spin tensor
x position vector
X dimensionless position vector
z direction of flow
b granular solid coefficients, is0 to 4i

d Dirac delta function
l second coefficient of viscosity, fluidf

L dimensionless lf

m first coefficient of fluid viscosity
n volume fraction of the solid particles
p dimensionless parameter
r density
s dimensionless shear stress
t dimensionless time
f volume fraction of fluid



( )

Subscripts
2,f referring to the fluid phase
1,s referring to the solid phase
m referring to mixturel

Superscripts
T transpose
U dimensionless quantity

Other symbols
div divergence operator
grad gradient operator
tr trace of a tensor
= gradient symbol

Ž .m Outer dyadic product
Ž .P Inner Scalar product
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